News

NY’s Creative Core Presents “Green of the Crop”

To celebrate the 40th anniversary of Earth Day, New York’s Creative Core is looking to highlight Central Upstate New York’s greenest endeavors.

Are you secretly the greenest on your block? Do you know someone who is? Go to www.greenofthecrop.com to nominate yourself, a friend, your family, a business, your neighbor, your school/community organization, and you both could win!

Categories

1) Businesses

  • What business, large or small, has the most ingenious green idea, product, or service?
  • Does the business produce an innovative green product or service?
  • Does it have a greener way of doing business (locally sourcing materials, reducing packaging or waste, a green production line, recycling programs, educating consumers)?
  • Does it have a greener way of running its business (car pooling programs for employees, energy efficiency at the workplace)?

2) Educational & Community Organization:

  • What school or community group is doing the most to “green the planet”? This category can include an entire school or an individual class, team, or club, as well as any community organization.
  • Is the educational or community organization involved in an ongoing green project?
  • Has the organization developed a green way of conducting its activities?

3) Individuals or Households:

  • Which local person, family, or household is doing the most unique or coolest thing to be green?
  • Does the individual or household have a unique or cool green “passion” (extreme recycling, community composting or gardening, green volunteering)?
  •  Does the individual or household have an innovative green lifestyle (reducing energy use at home, using clean and renewable energy, sustainable transportation options, eating and buying local products)?

4) Inventor, Innovator, or Entrepreneur
Know a green innovator or inventor? We’re looking for the next big green idea that could be coming out of a research lab, barn, garage, basement, or warehouse in the Creative Core.  Is there a “green Edison” at work in our region?

  • Does this inventor, innovator or researcher have a bold new idea that can be the next green product or solution?
  • What are the cool new technologies being developed in this region, and who are some of the green inventors and entrepreneurs behind them?
  • Prizes
  • First place winners in each category will receive $150.00, be profiled in the May 18th issue of GreenCNY magazine, and will receive an invitation to a recognition ceremony.
  • Second and third place awards will be given in each category, and they will receive mention in GreenCNY Magazine and an invitation to the recognition ceremony.
  • Nominators are eligible for a random drawing to receive a gift certificate donated by local businesses.

Nominations are due April 9, 2010. For further participation and submission guidelines, terms and conditions, and to see the list of organizations partnering on the competition , visit www.greenofthecrop.com.

Bridging the Temporal Mismatch between Remotely Sensed Land Use Changes and Field-Based Water Quality/Quantity Observations

ESF Researchers Explore New Technologies for Hydrology with CARTI Grant from SyracuseCoE

Read the publication: Enhancing and replacing spectral information with intermediate structural inputs: A case study on impervious surface detection

As urban development continues to expand outward, cities and suburbs are losing permeable surfaces to sidewalks, roads, and parking lots. By taking natural hydrology out of the equation, we are faced with negative impacts on water quality from storm water runoff.

Runoff moves swiftly over impervious surfaces, picking up dirt and contaminants as it flows to the nearest water body. Runoff also puts pressure on sewer lines, which can breach capacity during storms, releasing a mixture of raw sewage and runoff directly into a nearby waterway before reaching a plant for treatment—known as combined sewer overflows.

Recently, researchers have been incorporating remotely sensed satellite imagery to detect impervious surface cover in a given area. The resulting maps help hydrologists link water quality to trends in development and nonpoint source water pollution (runoff). However, traditional hydrologic modeling methods are limiting because they capture total impervious surface cover but ignore its spatial distribution. Also, hydrologists are not aware of possible limitations in the image analysis algorithms that provide the impervious maps.

With funding support from SyracuseCoE, a team of researchers at the SUNY College of Environmental Science and Forestry has developed enhanced image processing technology capable of accurately detecting impervious surfaces, while simultaneously providing an accuracy metric for every detected pixel. The technology is revolutionary, as it bridges a significant scientific gap between image analysts and hydrologic modelers. Dr. Giorgos Mountrakis, an Assistant Professor in the Environmental Resources Engineering Department of SUNY ESF and the Principal Investigator in this grant, notes:

“The funding from SyracuseCoE was critical in allowing researchers with diverse backgrounds to come together and tackle the elimination of typical disciplinary barriers through a collaborative and highly integrated approach. It was a group effort, that none of us could have undertaken in isolation, with some impressive results.”

This enhanced processing technology is coupled with an integrated modeling framework that incorporates socioeconomic, land use and environmental monitoring data. These inputs can be plugged into the model and used to project future trends on a more frequent basis.

Moving forward, the model will be translated into software and distributed to communities to help them make smarter land-use decisions in the future.

 

Life Down Under: The Forgotten Hyporheic Zone in Stream Restoration and Development of a Bioindicator of Subsurface Recovery

Billions of dollars are spent every year on stream restoration projects aimed at restoring the hydraulic and ecological diversity of natural stream systems. Usually restoration goals are focused on bank erosion and improving fish habitat. But, what effects are there on the subsurface environment? Streams are not simply surface flow over a stream bed, but include complex interactions with and within the stream bed. What effects do these man-made rock structures have on biological communities within the bed itself? Do they restore the habitat and biological diversity like we hope they do?

These engineered stream restoration structures may induce hyporheic exchange—the mixing of surface and groundwater flows—within the stream bed. No one has ever studied the effects of these structures on the living world within the stream bed (an entire and complex fauna of invertebrates lives down there). Kathleen McGrath and her team at SUNY College of Environmental Science and Forestry partnered with Laura Lautz at Syracuse University to study Ninemile Creek in Marcellus, NY, an ideal field “laboratory” to examine the effects of restoration structures on subsurface invertebrates.

The team of researchers at Ninemile Creek found that cross vane structures, or carefully placed V-shaped rock structures built across the channel to funnel flow toward the center and away from eroding stream banks, do appear to affect the nature of the environment in a positive way. By mimicking natural riffle pool flow patterns with carefully placed rock structures, flow patterns in and out of the bed, and associated hyporheic habitats do appear to be more diverse. Invertebrate communities may be more diverse and healthy as well.

A better understanding of stream restoration effects on the hyporheic zone allows us to guide future stream restoration efforts to restore not just the surface environment of a healthy stream, but also the subsurface environment as well.

Groundbreaking Held for Near Westside’s Lincoln Supply Building

In September 2009, a ceremony was held to commemorate the start of a $3.2 million renovation project of the Lincoln Building, located on the 300 block of Wyoming Street, Syracuse.

The Lincoln Building, formerly known as the Lincoln Supply Warehouse, is a 100-year-old, four story property that will be renovated to create 30,000 square feet of mixed-use commercial and residential space. The renovation will transform the first two floors into commercial space and the top two floors into live/work artist lofts.

The building is designed to demonstrate innovations in green technologies for energy and environmental systems, with SyracuseCoE funding the design of green systems for the project. The effort is led by SyracuseCoE Gold Partner C&S Companies, with contributions from SyracuseCoE Charter Member Northeast Green Building Consulting, Earth Sensitive Solutions, John Todd Ecological Design, Intelligent Converted Energy, Building Energy Solutions, and Steven Winter Associates.

The project is one of the first in the country that has been designed using a proposed new rating system that is being developed by SyracuseCoE Charter Member the US Green Building Council for mid-rise, multi-family residential buildings. The Lincoln Building is designed to achieve a Gold rating in the new LEED system, one step below the highest rating.

SU, IBM Break Ground on Green Data Center

In May 2009, officials from SyracuseCoE Platinum Partner Syracuse University, IBM, and New York State broke ground on what will be one of the most energy-efficient computer data centers in the world. With the use of green technologies, the new facility is expected to use about half the energy of a typical data center. US data centers consume more than 62 billion kilowatt hours of electricity annually at a total cost of about $4.5 billion, an amount equal to what 5.8 million US households use in a typical year.

The project, expected to be completed in late 2009 on SU’s South Campus, will focus on the actual construction of the data center itself, not just the computer hardware and software. A key element of the $12.4 million, 6,000-square-foot facility will be an onsite electrical co-generation system. It will use natural gas-fueled micro-turbine engines to generate all electricity and provide cooling for the computer servers.

The data center also will feature a liquid cooling system will use double-effect absorption chillers to convert exhaust heat from the microturbines into chilled water to cool the data center’s servers, with sufficient excess cooling to handle the needs of an adjacent building.

The facility will contain more than $5 million in IBM-donated equipment, design services, and support, which includes supplying the electrical cogeneration equipment and servers such as IBM BladeCenter, IBM Power 575, and an IBM z10 systems.

Naturally Chilled Water Project Begins Feasibility Study

Introduced in October 2008 by SyracuseCoE Platinum Partner SUNY-ESF, the Central New York Naturally Chilled Water Project (CNYCWP) is in the process of conducting scientific and engineering investigations to determine the feasibility and suitability of bringing naturally chilled water from Lake Ontario to Onondaga and Oswego counties, using existing rights-of-way and new technology to effectively support a large-scale municipal cooling district and other opportunities. The $1.5 million funding for the study was secured through the US Environmental Protection Agency.

The lake water would provide a greenhouse gas-free cooling source that would reduce emissions and cut the amount of fossil fuels used to power mechanical chillers and coolers in regional private and public buildings. After being used, the oxygen-rich water would fl ow back through Onondaga Lake and then return to Lake Ontario, closing the loop on the system.

Not only does the project stand to provide natural cooling to buildings, but the water, when deposited in Onondaga Lake, can aid in the lake cleanup. The water entering Onondaga Lake would be approximately 52 degrees, which is cooler than Onondaga Lake in the summer. This cooler, oxygen-rich water will help reduce mercury and other toxins, add oxygen naturally and enhance aquatic fisheries.

SyracuseCoE Opens One-of-a-Kind BEST Lab

Two of Syracuse’s signature strengths—robust, four-season weather and expertise in green building technologies—have attracted an international team to conduct a project that will help improve energy efficiency in buildings through weatherization technologies.

Project partners include the Air Barrier Association of America (ABAA), Oak Ridge National Laboratory (ORNL), the US Department of Energy (USDOE), the New York State Energy Research and Development Authority (NYSERDA), Syracuse University, and the Syracuse Center of Excellence (SyracuseCoE). The partners have committed more than $2 million to undertake the three-year project.

The project is being conducted at the new Building Envelope Systems Test (BEST) Laboratory—opened in April 2009—a unique SyracuseCoE research and development facility located on SyracuseCoE Platinum Partner Syracuse University’s South Campus. The project focuses on the performance of air barriers—systems that control unintended air movement between outdoors and indoors, which can have major impacts on a building’s energy use and indoor air quality. In heating climates, up to 40% of the energy use in a building can be attributed to air leakage.

The BEST Laboratory resembles a small, two-story house. In place of windows, the laboratory has 34 openings for test panels, each of which is four feet wide and nine feet high. ABAA has installed panels that represent various materials and air barriers, which are then subjected to identical outdoor and indoor conditions. Inside, ORNL will install instruments to measure temperature, moisture and air movement. ORNL will analyze the results.

The location of the BEST Laboratory in Syracuse recognizes the expertise and resources available through SyracuseCoE, such as Jianshun Zhang, professor of mechanical and aerospace engineering at SU, who is director of the world-renowned Building Energy and Environmental Systems (BEES) Laboratory in the L.C. Smith College of Engineering and Computer Science. Zhang, along with other SU faculty and students, will help manage the BEST Laboratory.

See a list of Professor Jianshun Zhang’s published research.

Bringing Historic Lessons Home

SyracuseCoE and the EFC are applying the lessons learned about sustainable disaster recovery and urban redevelopment to Central Upstate New York:

DECONSTRUCTION— With leadership assistance from Northeast Green Building Consulting and Naef Recycling, SyracuseCoE and Home HeadQuarters are working together on it, he planned deconstruction of a house in Syracuse’s Near West Side Neighborhood, including workforce development, market development, and policy initiatives needed to support the process. The project expects to provide a framework that engages the community in sustainable urban redevelopment.

DISASTER RECOVERY—The EFC is considering creating a framework that can be applied to other communities affected by disasters—in Central Upstate New York, those can include ice storms and floods—that takes the Historic Green recovery as a model of sustainable rebuilding.

COMMUNITY ENGAGEMENT—The Historic Green project is a model of community engagement in planning, development, and even construction. Lessons in how to involve community members are being applied to the Near West Side Initiative.

Taitem Demonstrates Split Desiccant AC

Historically, the only way to condition air was to draw it over a cold surface, around 45 degrees Fahrenheit, but Ithaca-based Taitem Engineering, PC has found a way to do it with much warmer surfaces, around 60 degrees Fahrenheit.

In August, a team from Taitem—led by Ian Shapiro—successfully tested the concept of a Split Airstream Desiccant Cooling system at the Building Energy and Environmental Systems (BEES) Laboratory at Syracuse University. The team met its system efficiency goal of a 1.2 coefficient of performance. Syracuse CoE funded the testing with a grant from the US Environmental Protection Agency.

The system splits an air stream in two and uses a desiccant wheel to transfer moisture to one stream, increasing relative humidity so that warmer water can condition the air. Thus, it could use cool water from geothermal wells or lakes. It does not use a compressor or refrigerants, uses little electricity, and runs quietly.

It does require heat, but using geothermal wells and solar energy could provide air conditioning virtually for free. Even if the system used gas, the operating cost could be as much as half that of conventional air conditioning. For more information on Taitem, click here.

Maxwell School Students Help City of Oswego, US Virgin Islands

The EFC and SyracuseCoE continue their important partnership with the Maxwell School of Syracuse University through the graduate capstone project, a four-week intensive research and development project that caps the one year Masters of Public Administration program.

Supporting SyracuseCoE’s clean and renewable energy focus area, SyracuseCoE and EFC engaged a Maxwell capstone student team that collaborated with the school’s Center of Environmental Policy and Administration to develop a sustainable energy plan for city of Oswego in Central Upstate New York.

A second capstone project looked at the development of wind power on the US Virgin Islands, which is part of the EFC’s US Environmental Protection Agency Region 2 catchment. For this project, students researched and developed wind power policy directives that the US Virgin Islands’ government can use regarding the siting of wind energy facilities.

SyracuseCoE and the EFC continue working on projects in the Virgin Islands, providing opportunities for Partners such as Clarkson University and Syracuse University’s College of Engineering and Computer Science.

Improving Energy Efficiency in Near West Side Homes

An integrated project to help homeowners in the Skiddy Park area of Syracuse’s Near West Side neighborhood assess and improve energy use and indoor environmental quality began in January with the first of as many as 50 families receiving free home energy assessments. Home HeadQuarters is leading the project, with assistance from SyracuseCoE.

The Home Performance Study energy assessments will evaluate energy use along with health and safety issues in participating homes and will help identify needed improvements to reduce energy use that may result in lower utility bills.

Home HeadQuarters is providing Energy Upgrade Mini-Grants of up to $2,500 to help with home improvements identified through the home energy assessments. The mini-grants, available at Home HeadQuarters through the city of Syracuse, are made possible with Syracuse Neighborhood Initiative funding secured by Rep. James T. Walsh (R-NY).

SyracuseCoE staff is offering advice and guidance to homeowners on recommended energy improvement options. Together, Home HeadQuarters and SyracuseCoE are helping homeowners research and apply for additional funding opportunities. Homeowners may also be eligible to try new energy-saving appliances and/or equipment in their homes, which would be made possible through SyracuseCoE. At the end of 2007, Syracuse University, at the request of SyracuseCoE, solicited bids for home assessments from local Building Performance Institute (BPI) certified firms. Three Syracuse firms—TAG Mechanical, Zero Draft, and Comfort Home Improvements—were hired to conduct the assessments.

Breaking It Down and Building It Up in New Orleans

Members of the Environmental Finance Center (EFC) at Syracuse University learned there’s more than one way to use a hammer when they helped with reconstruction—and deconstruction—of the Holy Cross neighborhood of New Orleans’ Lower 9th Ward.

The EFC was invited in March to observe and evaluate the Historic Green project. Specifically, the team analyzed the components—the people, resources, and plans—involved in this unique recovery project in a neighborhood devastated by Hurricane Katrina in 2005.

The EFC team met with organizers and project stakeholders, interviewed participants, attended community meetings, and toured project sites. The team members also got their hands dirty working side-by-side with community members and volunteers from all over the nation.

Historic Green is a collaboration between Holy Cross community members, local organizations, and non-profit groups, as well as a national network of students and others involved in green building.

Historic Green is innovative because it focuses on what the community wants to do. For instance, Holy Cross residents wish to preserve the historic look and feel of their community, so community members, the Preservation Resource Center, and Emerging Green Builders are working together to deconstruct and reconstruct these historic homes.

The majority of the green building is being done to homes that survived the storm. The reconstructed homes will be more environmentally friendly and will likely save homeowners thousands of dollars in energy costs over the lifetime of the house.

SyracuseCoE Team to Design High-Performance Homes

Thanks to $550,000 from the New York State Energy Research and Development Authority (NYSERDA) awarded in February, a collaborative SyracuseCoE team will design and build up to six new energy-efficient “green” homes in Syracuse. CDH Energy leads the Home Performance Improvement Challenge (HomePIC). Additional members include the Building Performance Contractors Association, Camroden Associates, Northeast Green Building Consulting, and Syracuse University.

The HomePIC project team completed a similar NYSERDA sponsored project in 2007. The High Environmental Performance (HEP) house project developed a design for a new energy-efficient home built in Fayetteville, NY. The HomePIC project will extend the skills and experience deployed in the HEP house into the mainstream housing market. The goal of the HomePIC project is to work with builders that construct affordable homes of between 1,500 and 2,500 square feet and that are interested in achieving better energy performance from existing designs.

The NYSERDA grant will pay builders a $10,000 incentive to construct the first demonstration home of each design developed by the HomePIC team. In addition, SyracuseCoE has committed to provide up to $100,000 in incentives to build up to 10 new design homes in the Near West Side neighborhood. Design, construction, and performance data of completed homes will be available to builders and home buyers on the NYSERDA website.

Tower to Survey City’s Air

In February, a 150-foot Air Pollutant Monitoring tower was raised on the site of the Syracuse CoE headquarters. The tower will be used for a long-term, one-of-a-kind study that will assess Syracuse’s urban air quality, air flow, and how outside air affects air quality inside a building.

Eventually, this air quality data could lead to intelligent building management systems that will tell occupants when it is a good time to open a window and when they should close up because of air pollution.

Both the tower installation and the research are collaborative efforts involving scientists from several Members of Syracuse CoE, including Syracuse University, Clarkson University, Cornell University, and SUNY-ESF.

Prof. Myron Mitchell of SUNY-ESF, leads the team that installed the tower and fitted instruments, a project funded with part of a $380,000 New York State Foundation for Science, Technology, and Innovation (NYSTAR) grant administered through Syracuse CoE.

Leading the data monitoring team is Prof. Philip Hopke of Clarkson University. Hopke’s project, funded with a $600,000 Syracuse CoE research grant, is titled, “Characterization of the Ambient Air Quality in Syracuse and Identification of Its Origins.”

See a list of Professor Myron Mitchell’s published research.

Bringing the Sky Down to Earth

Scientific research is dependent on gathering accurate data, but when the research field is the atmosphere, gathering uncontaminated information quickly and efficiently is a challenge.

Weather balloons may be slow and U2 research aircraft too expensive, but aeronautical researchers have another choice. They can put instruments on relatively inexpensive, more easily deployed Unmanned Aerial Vehicles (UAVs). That’s what SyracuseCoE associate and Clarkson University Professor Suresh Dhaniyala plans to do, thanks to a $100,000 CARTI grant to produce a compact, fully instrumented UAV for real-time air quality studies in urban airsheds.

The use of small, unmanned aircraft is crucial to Dhaniyala’s research, which models how submicron aerosol and microscopic particles—abundant in urban airsheds—move in the chaotic conditions of the atmosphere.

To fit out the UAV, Dhaniyala and his team are developing several next-generation instruments for improved real-time study of microscopic air particles. Dhaniyala plans to combine these new instruments with new modeling efforts and the UAV to better understand the effect of microscopic air particles on human health and the global climate.

“The main aircraft—called VectorP—will arrive from the manufacturer in October 2007,” says Dhaniyala. “Until then, we are concentrating research on the development of instruments that will be flown in VectorP, and we have a smaller UAV that we have been outfitting with some of these for test flights.”

Indoor Air Quality Research: Clarkson Researchers to Study Impact of New Ventilator on Asthma Patients

Research Study Indicates that Indoor Air Quality Improvements with the HEPAiRx® Helps Asthmatic Children

For someone with asthma, airborne irritants can spring up practically anywhere, even inside the home. “One of the biggest culprits is the kitchen,” says Cheryl A. Gressani, Director of Business Development for Air Innovations of North Syracuse, New York.

Cooking releases tiny particles that easily migrate, she explains. Air Innovations is working on a new product to help those with respiratory problems find some relief inside their homes. With help from Clarkson University and a $150,000 grant from the SyracuseCoE Office for Industry Collaboration, the company has embarked on an 18-week research study of HEPAiRx, an air heating, cooling, and filtration unit for use in a single room, known as an “integrated energy-recovery ventilator.”

The ventilators are designed to be energy efficient as well. Air Innovations will install the units in the bedrooms of 45 asthma patients during the study and, with help from Clarkson researchers, record information on their health and the effectiveness of the system. In addition to heating, cooling, and filtering indoor air, the product brings in fresh air from outdoors. It also pressurizes the room to stop airborne irritants—such as those created during cooking—from entering.

Visit the HEPAirX®: Ventilating Room Air Purifier product page

Updates:

2008: The research study showed that the HEPAiRx® integrated energy recovery ventilator and air cleaner proved to be effective at improving indoor air quality and symptoms of asthmatic children.

2010:  Additional research studies indicate a reduction in lung inflammation and other benefits in the subjects using the HEPAiRx®.

2013: Air Purification System Researched at Clarkson University Granted FDA Clearance

 

Near Westside Initiative: Energizing a Neighborhood

On September 21, 2007 Syracuse received a double dose of good news when Syracuse University announced it will invest $13.8 million in the Near Westside neighborhood and WCNY Connected announced it plans to build a new broadcast and education center in the neighborhood.

The Near Westside Initiative (NWSI) is a collaborative effort to restore the Near Westside into a neighborhood of choice for residents of all incomes. Up to 263,000 square feet of commercial structures—including WCNY’s new building— and up to 154,000 square feet of residential space will be developed—and that’s just the beginning!

The SyracuseCoE will lead efforts to incorporate green technologies in the project. As part of this effort, the project will be used to evaluate the Leadership in Energy and Environmental Design-Neighborhood Development (LEEDND) system proposed by the US Green Building Council, which will bring the initiative national attention.

The initiative plans to enhance housing and economic opportunities for existing and new residents, maintain and restore the neighborhood’s historic architectural charm, and include residents in plans and discussions. Residential development will include an “artists’ quarter,” housing up to 70 artists. The NWSI will market this Arts, Design, and Technology Quarter nationally and internationally to attract prospective artists, entrepreneurs, and designers to the area, using a $485,000 grant from National Grid.

Among other groups involved in the NWSI are the City of Syracuse, Home HeadQuarters, The Gifford Foundation, Bousquet Holstein, National Grid, NYSERDA, Queri Development Corp., Syracuse Neighborhood Initiative, and Syracuse University.

Intellectual Collisions Spark Innovation

SyracuseCoE’s Collaborative Activities for Research and Technology Innovation (CARTI) Program Spur Start-up Growth

Funds from the US Environmental Protection Agency (EPA), fuels the SyracuseCoE’s Collaborative Activities for Research and Technology Innovation (CARTI) program.

“CARTI projects represent the best in air quality and water resource management research being conducted in the US,” says Rep. James R. Walsh (R-NY). “I’m proud to have secured funding to support ongoing research and education activities at the SyracuseCoE’s partner institutions.”

“Commercializing technology developed from this research will invigorate economic and job growth in our community,” adds SyracuseCoE Board Chairman R. Leland Davis. “The CARTI program is the spark that unites our distinguished universities with Upstate industries.”

Begun in 2006, CARTI is a cornerstone of the SyracuseCoE’s “technology transfer” initiative, which encourages open exchange of ideas and “intellectual collisions” between institutions and industry. CARTI research projects link academic researchers with business leaders across New York.

Along with the SyracuseCoE Office for Industry Collaboration’s Technical Application and Demonstration (TAD) grants, Commercialization Assistance Program (CAP), and Research & Technology Forums, CARTI is vital conduit that ensures start-ups and established firms alike benefit from a well-spring of innovative research conducted at world-class Upstate New York colleges and universities.

 

 

Helping Farmers Help Watersheds

Plants and animals need phosphorus to thrive, but when farming practices cause an increase of this nutrient in streams, rivers, and lakes, aquatic algae and other plants take advantage. Blooms of algae can spoil the natural balance of aquatic ecosystems and interfere with sources of drinking water.

The process whereby increases in nutrients lead to over-abundance of algae and other plants is called “eutrophication.” In 2007, Dr. Christine Shoemaker of Cornell University’s Department of Civil and Environmental Engineering, received a $100,000 Collaborative Activities for Research and Technology Innovation (CARTI) grant to improve the ability to understand and manage eutrophication in water bodies in Upstate New York due to excess phosphorus. The project is a collaboration with Cornell’s Department of Earth and Atmospheric Science.

Shoemaker, a SyracuseCoE associate, is a mathematician, engineer, ecologist, and water management expert, who is studying the impact of farming on phosphorus levels in watersheds that supply New York and other cities with drinking water.

A major issue is how to reduce phosphorus that enters water from cattle feed. Most of this phosphorus enters the ecosystem as cattle manure that is applied to farmland. Farmers often feed their livestock more nutrients than they need for optimal health. Research by the New York State Department of Environmental Conservation shows that farm phosphorus runoff can be reduced by 30% through a “whole-farm plan.”

“Earlier work by my colleagues and I indicates that if farming best-management practices are not implemented, phosphorus levels are going to increase, because there is more phosphorus going into the watershed than is leaving it,” explains Shoemaker, who, along with her students, has developed a computer model to track water, sediment, and phosphorus in the 47-square-mile Cannonsville watershed, one of four reservoirs in the Delaware watershed system that supplies New York City.

See a list of Dr. Christine Shoemaker’s published research.

Chasing Quicksilver Through the Mountains

Professor and SyracuseCoE associate Charles Driscoll and colleagues from the Hubbard Brook Research Foundation (HBRF) and Clarkson University have released the results of two new landmark studies that identify five known and nine suspected biological mercury hotspots in the northeastern US.

The findings suggest that coal-fired power plants in the US are major contributors to mercury pollution. One of the mercury hotspots occurs within New York’s Adirondack Mountains.

The studies are the result of a three-year effort by Driscoll and his collaborators, including Tom Holsen of Clarkson University.

In January 2007, Driscoll and his team briefed Congress, and the studies spurred Sen. Susan Collins (R-ME) to announce her intention to introduce legislation creating a nationwide mercury monitoring network. Collins also intends to reintroduce legislation that would require power plants to reduce  mercury emissions by 90%.

The HBRF team of 11 scientists used a database of more than 7,300 samples to quantify mercury levels in fish, loons, and other wildlife at lakes and reservoirs from New York to Nova Scotia. “We were surprised to find that the Adirondacks had some of the highest mercury levels in fish and loons in the Northeast,” says Driscoll, Professor of Environmental Systems Engineering at the LC Smith College of Engineering and Computer Science. “The average mercury levels in yellow perch were more than twice the human health criterion established by the US Environmental Protection Agency.”

Adapted from an article by Kelly Homan Rodoski in Syracuse Engineer, Spring 2007.

See a list of Professor Charles Driscoll’s published research.