Scientific research is dependent on gathering accurate data, but when the research field is the atmosphere, gathering uncontaminated information quickly and efficiently is a challenge.
Weather balloons may be slow and U2 research aircraft too expensive, but aeronautical researchers have another choice. They can put instruments on relatively inexpensive, more easily deployed Unmanned Aerial Vehicles (UAVs). That’s what SyracuseCoE associate and Clarkson University Professor Suresh Dhaniyala plans to do, thanks to a $100,000 CARTI grant to produce a compact, fully instrumented UAV for real-time air quality studies in urban airsheds.
The use of small, unmanned aircraft is crucial to Dhaniyala’s research, which models how submicron aerosol and microscopic particles—abundant in urban airsheds—move in the chaotic conditions of the atmosphere.
To fit out the UAV, Dhaniyala and his team are developing several next-generation instruments for improved real-time study of microscopic air particles. Dhaniyala plans to combine these new instruments with new modeling efforts and the UAV to better understand the effect of microscopic air particles on human health and the global climate.
“The main aircraft—called VectorP—will arrive from the manufacturer in October 2007,” says Dhaniyala. “Until then, we are concentrating research on the development of instruments that will be flown in VectorP, and we have a smaller UAV that we have been outfitting with some of these for test flights.”