

SYRACUSE UNIVERSITY ENGINEERING **& COMPUTER** SCIENCE

Impacts of in-duct needlepoint bipolar ionizers on indoor air quality (IAQ)

Jialei Shen¹, Zhenlei Liu¹, Daniel Love², Mary Dekold², Beverly Guo¹, Michael J. Birnkrant², Peter J. McKinney², and Jianshun Zhang¹ ¹Department of Mechanical & Aerospace Engineering, Syracuse University ²Carrier Global Corporation

Results **Removal effectiveness**

PM removal

	M
Decay	1.2
Constant	1.(

VOC removal fluctuation (PTRMS data)

Byproduct generations

Ozone generation

VOC generation

Ion generation MERV 8 + ionizer:

Energy consumption

Conclusions

• MERV 8 + ionizer: $1.0-1.7\% \rightarrow 7.2-10.4\%$ SPRE_{PM}; Not effective for VOC

• Most generated ions were captured by the filter

No significant ozone and VOCs generation

Moderate particle removal efficiency, but low energy use

In-duct ionizers should work with filter to maximize their removal effectiveness and minimize the leakage of ions to indoor air