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Motivation

® large-scale scene changes and fast camera motion make egocentric action
recognition (EAR) a challenging problem in computer vision. Egocentric
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e In vision-based gait recognition, an Permutation Invariant frames with the attention map generated by TimeSformer and our proposed model, respectively. ° U S D t t f E
individual’s gait video V, processed by e Upper branch: input is a sequence of silhouettes, which can be processed by EgoViT . . e pa r I I le n O n e rg y
computer vision algorithms, is matched any silhouette- or convolution-based approach. The model performs pooling
to an existing/known individual’s gait operation on feature maps multiple times, to obtain features in different We propose a new method, referred to as EgoViT, which can be incorporated with different ° U S D t t f' T t t'
video V’ in a database to recognize or receptive fields, and outputs the convolutional features. video transformers for egocentric action recognition. We have introduced a Dynamic Class . . e p a r I I l e n O ra n S p O r a I O n
Token Generator (DCTG) that leverages the pre-extracted hand-object interaction features

identify the person.
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« Gait recognition performance is usually ' to dynamically generate a class token for each video. We have shown that the DCTG is more
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affected by the_appearance Change_ of the Feature Learning Module extracts the distinguishing features from the E s ; | : i ; a pyramid architecture with dynamic merging module, which can properly model the
unknown subject, such as different skeleton key point cloud. We apply Recycling Max-Pooling Module to further L& oxsexse Ry e S — AT > temporal relationship and reduce the redundant information that the traditional video

clothing and carrying different items. improve the performance. EgoViT constructed based on Video Swin transformer transformer do not filter out. °® Sy ra C u Se U n ive rs i ty , C U S E g ra n t

- _ N EgoViT: Pyramid Video Transformer with Dynamic Class Token
Vision-based Gait Recognition for Egocentric Action Recognition
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