

Green Roofs: How Do They Affect Water Quality?

By: George Segré¹, Aimee Clinkhammer², Dimitar Todorov^{1,3}, Mario Montesdeoca¹

¹ Department of Civil and Environmental Engineering, Syracuse University, Syracuse NY ² Syracuse Center of Excellence for Environmental and Energy Systems ³ Utica College, Utica NY

CESE Center for Environmental Systems Engineering

- Background
- Benefits
- \circ Questions
- \circ Approach
- Analytes

- -NO₃ -NH³ -TN -Dissolved Organic Carbon (DOC)
- Summary
- Conclusion
- Future Work

Background:

- The global climate is changing; we must respond and adapt with it
- Green infrastructure is becoming the norm to this revolution
- Green roofs play a vital role in this initiative
- Combined Sewer Systems are one of the drivers for this technology
- Green roofs are categorized by substrate depth; *extensive* (≤ 6"), and intensive (> 6")

- $_{\circ}~$ Counteract the urban heat island effects
- Provide insulation
- Positive effect on urban air quality
- Habitat for plant and animal life within the cityscape
- Aesthetically pleasing
- Decrease storm-water runoff
- Water Quality?

Questions:

- How do green roof systems process precipitation chemistry within the urban ecosystem?
- What are the Wet and Bulk loadings in an urban environment and how are they different from the rural environment?
- Does a green roof retain nutrients and contaminants?
- Are there seasonal or startup variations in the performance of a green roof?

- Site Description:
 - -Located in downtown Syracuse, N.Y.
 - Extensive roof with a 4" substrate
 - 17,000 ft2
 - 15% average slope
 - 6 different sedum species
 - -Roof was completed in August 2009, collection began in April 2010
- Collection units:
 - -Wet collection
 - -Bulk collection
 - -Six different drainage sites across the green roof
- Sampling:

-Collection was done on a weekly basis. The samples were collected in polyethylene and glass bottles, then preserved at 4°C

) Sedum

(1

- 2 Lightweight, FLL-Approved Growth Media
- 3 MiraDRAIN[®] G4 Drainage Composite
- Adhered Sure-Weld[®] TPO Single-Ply Membrane
- 5 Adhered Moisture-Resistant Gypsum Board
- 6 Adhered ISO
- 7 CCW 725TR

Analytes:

- $\circ pH$
- Acid neutralizing capacity (ANC)
- Dissolved Inorganic Carbon (DIC)
- Dissolved Organic Carbon (DOC)
- Total Nitrogen
- o Ammonia (NH4)
- Anions (F, Cl, SO4, NO3, PO4)
- Aluminum (inorganic, monomeric, organic)
- Cations (Na, Mg, Al, P, K, Ca, Cu, Zn)
- Mercury *(Only for wet and bulk collection)

Results: NO3

Seasonal Fluctuation 10.00 9.00 8.00 NO3 Concentrations (mg N/L) 7.00 6.00 Cayuga Oswego 5.00 CoE Wet 4.00 CoE Bulk Avg. Green 3.00 2.00 1.00 0.00 spring fall winter summer

Depositional	(kg / Ha)				
Loading	spring	summer	fall	winter	annual
cayuga:	2.92	3.48	2.06	1.76	9.97
oswego:	3.49	3.90	3.33	8.15	19.01
Wet avg:	1.08	3.06	2.87	0.89	7.90
Bulk avg:	2.13	4.25	2.27	0.31	8.95
Green roof avg:	7.63	6.91	1.72	0.42	16.67

EPA drinking water standard is 10 mg/L NO3

Dilution effects:

These graphs are representative for all other analytes; large precipitation event is followed by a dilution effect, and a low correlation for the green roof

•Ammonium is a byproduct of decomposition

NH4 Seasonal Concentrations

Depositional (kg / Ha) (kg /	на)
Loading spring summer fall winter and	nual
cayuga: 0.95 1.25 0.65 0.30	3.16
oswego: 0.77 1.10 1.15 1.06	3.99
Wet avg: 1.03 1.24 0.52 0.28	3.06
Bulk avg: 8.96 0.77 0.44 0.16	L0.32
Green roof avg: 18.38 2.28 0.14 0.09	20.89

•Total Nitrogen is the sum of all forms of nitrogen; NH4, NOx, Organics, etc.

Results: NO₃⁺ and NH₄⁺

•Wet and Bulk don't show a seasonal change in NH₄ and NO₃ concentrations •The green roof shows marked changes throughout the seasons.

•Nitrifying bacteria are very temperature dependent

Average levels of DOC hover around 5mg / L

*Single, extreme value may be due to bird droppings. DOC concentrations decline as the growing season ends
Typical influent DOC for WWTP may be around 70 mg/L

- Wet and Bulk deposition are fairly similar in the rural environment, but divergent in the urban.
- Orban environment has higher concentrations for analytes
- There are marked seasonal changes for the green roof's runoff chemistry

Conclusions:

- Seasonal variations play a very important role on the performance of green roofs
- Green Roofs appear to be a source of nitrogen, but it may be leaching from the soil
- Additional monitoring is required in order to discern between startup effects, and true seasonal variations

Future Measurements:

- $_{\circ}~$ Install flow sensors on the green roof
- Install soil moisture sensors
- Install soil temperature sensors
- Ongoing measurements of the reference roof system

Special Thanks:

- Syracuse University
- Syracuse Center of Excellence
- Center for Environmental Systems and Engineering
- Charles T. Driscoll

 National Atmospheric Deposition Program (NRSP-3). 2011. NADP Program Office, Illinois State Water Survey, 2204 Griffith Dr., Champaign, IL 61820.