

Achieving Excellence in Indoor Environmental Quality

Physical factors

- Thermal Comfort - Air quality (ventilation)
- Noise-AcousticIllumination
- Personal factors
- ActivityClothing
- Adaptation - Expectation
- Exposure time

Energy Efficient Technologies

- Indoor air quality
 - Pollution sources
 Air distribution (contaminant removal) effectiveness
 - Personal ventilation
 - Air cleaning
- Thermal comfort

 - Low Temperature Heating- and High Temperature Cooling Systems
 Thermo-Active-Building-Systems (TABS)
 Drifting temperatures

No cooling – decreased performance Low energy costs Low operation costs

> Full Air-Conditioning Constant temperature Draught, Noise, SBS High energy costs High operation costs

4

Thermo-Active-Building-Systems Temperature ramps Reasonable energy costs Low operation costs

CONCEPTS OF RADIANT HEATING AND COOLING SYSTEMS

- Heating cooling panels
- Surface systems
 Embedded systems

d Wright's I 14

HISTORY

A lightweight fl came possible to heat the flo or, therefore elimin

c. 10,000 B.C., China, the word "kang," can be trace back to the 11th century B.C. and originally meant, "to dry" before it became known as a heated bed. c. 5,000 B.C., evidence of baked floors are found foreshadowing early forms of "kang" and "dikang" (heated floor) later "ondol" (warm stone) in China and Korea, respectively.

- Energy

Low-Temperature heating **High-Temperature Cooling**

- Higher efficiency of boilers and chillers
- Lower distribution losses
- Better use of renewable energy sources
- Low energy consumption for circulation
- Future flexibility
- Low Exergy

THERMAL COMFORT • -0,5 < PMV < +0,5 ; PPD < 10 % • Spaces with sedentary work : - Summer clothing 0,5 clo - Winter clothing 1,0 clo - Activity level 1,2 met OPERATIVE TEMPERATURE WINTER SUMMER 20 °C (68F)< t_o < 24 °C(75.2F) 23 °C (73.4F) < t_o < 26 °C (78.8F).

OPERATIVE TEMPERATURE

$\begin{array}{l} - \ t_{\rm o} = (h_{\rm c} t_{\rm a} + h_{\rm r} t_{\rm r})/(h_{\rm c} + h_{\rm r}) \\ - \ t_{\rm o} = 0.5 t_{\rm a} + 0.5 t_{\rm r} \ \ (\ \text{low air velocity}) \end{array}$

- » t_a = Air temperature
 » t_r = Mean radiant temperature
 » h_c = Convective heat exchange coefficient
 » h_r = Radiative heat exchange coefficient

Mean Radiant Temperature

+ $t_r = \Sigma F_{p,i} | t_{si}$ - $F_{p,i}$ = Angle factor from person to surface i - t_{si} = Surface temperature of surface i - $\Sigma F_{p,i}$ = 1

ISO/TC 205/WG 8 Radiant Heating & Cooling System						
		New standard				
	Part 1	Definition, symbols, and Comfort criteria	ISO/DIS 11855-1			
	Part 2	Heating and cooling capacity	ISO/DIS 11855-2			
	Part 3	Design and Dimensioning	ISO/DIS 11855-3 (July)			
	Part 4	Dynamic analysis	ISO/DIS 11855-4			
	Part 5	Installation and commissioning	ISO/CD 11855-5			
	Part 6	Operation and maintenance	ISO/CD 11855-6 (July)			
	Part 7	Electrical embedded heating system				

BBI airport, Berlin, Germany. 76,750 m² to be heated/cooled with floor system

- The in-city airports in Berlin will be closed and replaced by the new BBI
- In future, up to 6,500 persons will be starting or landing at the new airport in a typical hour.
- There will be a floor heating/cooling realized in 2010

HEAT LOADS

- Once the heat load to the space had been determined, the conditioning system was being developed.
 The loads for the concourse were 97 W/m2
- The conditioning systems to remove this heat from the space was divided as follows:
 - Radiant Floor 80 W/m2
 - Ventilation Air 17 W/m2

VENTILATION

- The outdoor air AHU will supply variable outdoor air quantities at a constant temperature to the zone AHU's.
 The volume of outdoor air will be varied depending upon the CO₂ levels metered in each zone, down to a fixed minimum provided. position
- Each zone AHU can supply air at 16 C to the space via the displacement diffusers

Slab used in simulation

CONTROL OF WATERTEMPERATURE

• Supply water temperature is a fun temperature according to the equation:	ction	of outside
$t_{\sup ply} = 0.52 * (20 - t_{external}) + 20 - 1.6 * (t_o - 22)$	°C	(case 801)

Average	water	temperature	is	а	function	of	outside
temperat	ure acc	ording to:					

 $t_{average} = 0.52 * (20 - t_{external}) + 20 - 1.6 * (t_o - 22)$ °C (case 901)

Average water temperature is constant and equal to: 22°C in summer and 25°C in winter.
Supply water temperature is a function of outside temperature according to the equation:

sup ply of the external for the external for the former of the external for the external fo	$t_{expn dy} = 0.35 * (18 - t_{external}) + 18$ °C summer (case 1401)
--	---

$t_{sup ply} = 0,45 * (18 - t_{external}) + 18$	°C	winter	(case 1401)

PERFORMANCE EVALUATION

- Range of operative temperature
- Pump running time Energy consumption

ART MUSEUM BREGENZ

Seite 14

ART MUSEUM IN BREGENZ

Design requirements

- Air temperature variations during a day within 4 K
- Relative humidity variations less than 6 % during a day.
 Seasonal variations between 48 and 58 %
- Room temperature in winter 18 °C to 22 °C
 Room temperature in summer 22 °C to 26 °C, occasional up to 28 °C
- Design load 250 persons pr. day, 2 hours
- Displacement ventilation < 0,2 h⁻¹
- Floor area 2.800 m², 4 floors
- 28.000 m plastic pipes embedded in walls and floor slabs

ART MUSEUM BREGENZ

- 3.750 m² floor area
- 4.725 m² embedded pipes
- Condensing boiler
- Ventilation 750 m³/h per floor (first design was 25.000 m³/h

Low Exergy Hydronic Radiant Heating and Cooling Why?

- · Water based systems
- Low temperature heating High temperature cooling
- More economical to move heat by water:
 Greater heat capacity than air
 - Much smaller diameter pipes than air-ducts
- Electrical consumption for circulation pump is lower than for fans Lower noise level
- Less risk for draught
 Lower building height
- Higher efficiency of energy plant
- But
- Reduced capacity?
 Acoustic?
 Latent load?

NO: 7 Low temperature heating and high tem-perature cooling

ribes the svs ms that where

ilding structure in all types of peratures take ad-city of the

e (of 25

conditions it is also possible to use renewable energy sources, for example ground heat ex-changers or rain water ground accumulators. The guidebook describes the follo

mo Active Building Syst ms (TABS) 6 1 2 3 (1)

(1) () 1

Spring floor construction. 1 = PVC- or linoleum covering, 2 = wood plate 3 = PE foil, 4 = blind floor, 5 = pipe keeper,...

